
ADPT: AN ACTIVE LEARNING METHOD
FOR A PROGRAMMING LAB COURSE

Claudia Martínez, Marcia Muñoz
Departamento Ingeniería Informática

Universidad Católica de la Santísima Concepción, Chile
cmartinez@ucsc.cl, marciam@ucsc.cl

ABSTRACT

This paper describes the active learning method used in a programming lab course in the
Computer Science program at the Universidad Católica de la Santísima Concepción (UCSC).
As a result of the UCSC School of Engineering curricular reform performed in 2011, the first
year of the computer science program was modified to include a Programming Lab course
where teams of students analyze problems and design solutions following a structured
approach. Each stage of this process is supported by specific tools and techniques.

ADPT (Analysis, Design, Programming and Testing) is an active learning method based on a
PBL (Problem-Based Learning) approach, composed of the four stages of the classical
software development method, also called the waterfall model. This approach includes
rigorously ordered stages, where each one assumes the previous stage has been completed.
The main difference between ADPT and PBL is that PBL encourages collaboration within the
working team whereas ADPT also encourages collaboration with other teams. In the
Programming Lab course, students have to solve four problems using the ADPT method.

The results discussed in this study correspond to students that took the Programming Lab
course in the first semester of 2013. Preliminary results are positive both in relation to the
assessment of the results obtained by the student teams as well as students' perception of
the ADPT method. Surveys also registered high levels of satisfaction with active learning
methods, especially team-work and cooperative learning. These results are consistent with
our previous work in 2011 and 2012.

KEYWORDS

Active learning, problem-based learning, cooperative learning, standards: 5, 7, 8 and 11.

INTRODUCTION

In 2011, the UCSC School of Engineering reformed the curricula of its five engineering
programs based on the CDIO initiative (Loyer et al., 2011). Among other issues, the
curriculum reform process addresses the problem of motivating its first years' students by
incorporating first-year courses (Muñoz et al., 2013) through the development of activities
that acquaint students with their professional role, thus contributing to the adoption of CDIO
standards 1, 4 and 8. In particular, the computer science program was modified to include
two semester-length introductory courses. In the first course, Introduction to Computer

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

Science, students become familiarized with their profession and with the software lifecycle by
developing a simple project from its conception to its operation. The second course is a
Programming Lab where students analyze problems and design solutions following a
structured approach. In this course, students engage in programming and also develop
personal skills for self-learning and teamwork.

FRAMEWORK

Problem Based Learning (PBL)

PBL is active learning method in which teams of students learn through solving relevant
problems and reflecting on their experiences (Barrows & Tamblyn, 1980). Problems must
involve a cognitive conflict, and must be challenging and motivate students to seek a
solution. Problems must be complex, so that its solution requires cooperation among all team
members. The instructor must act as a facilitator, making the problem a real team challenge
to be solved and thus preventing students from just dividing up the work. In this way, PBL not
only helps students learn the subject matter, but also helps develop teamwork, self-directed
learning, information searching from diverse sources, decision making, problem solving in
different ways oral and written communications, among others (Prince, 2004).

Cooperative Learning

Cooperative learning is the instructional use of small teams so that students work together to
maximize their own and each other’s learning (Johnson, Johnson & Smith, 1998). Felder and
Brent (1994, 2007) discuss the elements of cooperative learning, such as:

Positive interdependence: Team members must rely on one another to achieve the goal. If
any team members fail to do their part, everyone suffers the consequences.

Individual accountability: All students in a team are held accountable for doing their share of
the work and for their mastery of all of the material to be learned.

Face-to-face promotive interaction: Although some of the team work may be divided and
done individually, some must be done interactively, so that group members provide one
another with feedback, challenge each other's conclusions and reasoning, and perhaps most
importantly, teach and encourage each other.

Appropriate use of collaborative skills: Students are encouraged and helped to develop and
practice trust building, leadership, decision-making, communication, and conflict
management skills.

Team processing: Team members must set goals, periodically assess what they are doing
well as a team, and identify the changes to be made to function more effectively in the future.

THE ADPT METHOD

ADPT (Analysis, Design, Programming and Testing) is an active learning method based on a
PBL approach and cooperative learning (Figure 1), composed of the four phases of the

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

classical software development method (waterfall model) (Pressman, 2009). This approach
includes rigorously ordered stages, where each stage assumes the previous stage has been
completed.

Figure 1. ADPT sources

The instructor’s role as a facilitator consists of rigorously planning the activity and of guiding
students along the different stages of the method. For a given problem, students must
identify inputs, processes, outputs and restrictions. Then, they must design, build and test a
solution by following the stages described below:

Induction

The instructor presents an example animation, which was built as a learning object in
Macromedia Flash. The instructor formulates key questions, which are discussed in class,
and clarifies students’ questions about the problem. : 10 minutes.

Division into Teams

Students are divided into N teams, where N is a multiple of 4. Ideally, each team should have
3 or 4 members. Team size must be adjusted so that the number of teams is always a
multiple of 4. Teams are labeled T1..TN. : 5 minutes.

The instructor now assigns a list of 4 problems Pj to each team (j=1..4), explains the didactic
sequence execution, and hands out other materials and the deliverables’ format. : 5
minutes.

Didactic Sequence

Every team (Ti, i=1, 2,..N) executes the sequence of problem resolution tasks shown in
Figure 2. In this sequence, each team performs all four stages of the classical software
development method (waterfall model): analysis, design, programming and testing for a
different problem, so that one team’s deliverable is the next team’s input. For example,
Team1 begins by analyzing problem P1. Its results follow the analysis template shown in
Figure 3, and must be clear and precise. Team2 uses this deliverable as an input to the
design stage, which generates as output a flowchart. Team3 uses this flowchart as an input to
the programming stage. Finally, Team4 tests the program generated by Team3. : 60
minutes.

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

Closing Stage

The instructor finalizes the activity, analyzing the process, student learning and team results,
remarking on difficulties in generating good specifications, controlling analysis time,
balancing workload among teammates, etc. : 10 minutes.

�

Figure 2: Teams sequence

This didactic sequence has an estimated overall time of 90 minutes. Table 1 shows the
ADPT sequence of actions for each team.

Table 1. ADPT sequence for each team

Team ADPT sequence
T1 P1A→ P4 D→ P3 P→ P2 T
T2 P2A→ P1 D→ P4 P→ P3 T
T3 P3A→ P2 D→ P1 P→ P4 T
T4 P4A→ P3 D→ P2 P→ P1 T

Figure 3 shows the deliverables for each stage. The analysis stage delivers a completed
analysis template, the design stage delivers a flowchart, the programming stage delivers
source code, and the testing stage delivers the results of executing the test cases.

Comparison to other Active Learning Methods.

The ADPT method is a systematization of regular classroom practices from the Programming
Lab I course. Even though the ADPT method was proposed to support teaching computer
programming, it includes generic elements of both PBL and cooperative learning methods,
and adds techniques and tools from the computer programming domain, as shown in Table 2.
It can be seen from the table that the main differences between ADPT and PBL are that PBL
encourages collaboration within the working team whereas ADPT also encourages
collaboration with other teams, and that PBL focuses on solving ill-structured relevant
problems, while ADPT focuses on well-structured and semi well-structured simple problems.

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

Figure 3. ADPT deliverables for each stage

Table 2. Comparison of active learning methods

CDIO

goals standards

Problems
types

Teacher
role as

facilitator
Interaction

Positive
Interdependence

Specific
domain

Use
rubrics

Group
size

PBL 2.1 7, 8, 11
ill-structured

problems
X

Face to face
inside group

X None X Small

Cooperative
Learning

2.1 7, 8, 11 Any X
Face to face
inside group

X None X Small

ADPT
2.1
3.1

5, 7, 8,
11

Structured
and semi-
structured

X

Face to face,
inside and
between
groups

X
Teaching

Programming
X Small

Adoption of the ADPT method contributes to CDIO syllabus goals 2.1 and 3.1, as well as to
CDIO standards 5, 7, 8 and 11. Standard 5 refers to design and implementation experiences,
in this case at a basic level. Standard 7 refers to integrated learning experiences that foster
the learning of disciplinary knowledge as well as personal and interpersonal skills, while
standard 8 discusses teaching and learning based on experiential active learning methods.
Finally, standard 11 covers the assessment of student learning in personal and interpersonal
skills, and product, process and system building skills, as well as in disciplinary knowledge.

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

ADPT Method Application

Programming Lab I Course Description

In this course, students learn computer programming using basic tools and simple structured
problems, and also develop teamwork skills. Table 3 presents the course's learning
outcomes, associated to disciplinary knowledge and reasoning (CDIO 1.2), personal and
professional skills and attributes (CDIO 2.1), and interpersonal skills: teamwork (CDIO 3.1):

Table 3. Programming Lab I contribution to CDIO syllabus goals

Programming Lab I Learning Outcomes

1.2 Fundamentals of algorithms, data structures and
programming languages
1.2.1 Explain the different software development stages.

1.2.2
Identify inputs, outputs and constraints for a given
problem.

1.2.3
Design a structured solution using an algorithmic
representation technique.

Disciplinary knowledge and
reasoning

1.2.4
Build an algorithmic solution using a structured
programming language.

Personal and professional skills
and attributes

2.1 Analyze a problem by dividing it into identifiable parts, and
propose solutions.

Interpersonal skills: Teamwork
and communication

3.1 Can work autonomously and join interdisciplinary teams.

This course meets for 5 hours per week. During the second semester of 2013, the
Programming Lab I course was taught in two parallel sessions of 24 and 29 students,
respectively. Table 4 describes example problems belonging to each of the three applied
didactic sequences on a semester.

Table 4. ADPT example problems

ADPT problem Short Description

ADPT1:
Piano melodies

Develop an application using the ADPT method that simulates an 8-key piano
(do-re-mi-...sol), where each key must reproduce a different sound. The program
must terminate when the user presses the * key.

ADPT2:
Car crashes

Develop an application using the ADPT method that simulates a moving vehicle
using ASCII characters in the C programming language. The vehicle must move
to the right with a 1 second lag. Parameterize the initial position and speed
(consider it constant). Some of the challenges that students had to face include
parameterizing the vehicle's final position, changing the trajectory from linear to
sinusoidal, and having the vehicle crash once the trip is complete.

ADPT3:
Text processing

Develop an application using the ADPT method that implements a text
preprocessing module for a spanish language text read from an input text file.
This preprocessing must identify the number of consonants, vowels and words in
the text, the number of vowels in the text, the number of words in the text, and
identify stopwords present in the text.

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

Figure 4. Product-process rubric

Figure 5. Teamwork rubric

ADPT didactic sequence qualification

The UCSC grading system establishes a numeric scale (1-7). Therefore, the points gathered
from the rubrics must be transformed to be able to calculate each activity's final grade for
each student, considering the process-product evaluation as 80% of the grade and the
teamwork evaluation and 20% of the grade.

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

Figure 6. Reflective memo template

RESULTS AND DISCUSSION

Figure 7 shows the results obtained from section A of the reflective memo shown in Figure 6.

0%

10%

20%

30%

40%

50%

60%

ADPT1 ADPT2 ADPT3

ADPT activities

%
 S
tu
d
e
n
ts

Highly suitable

Suitable

Neutral

Unsuitable

Highly unsuitable

Figure 7. Pertinence of each ADPT didactic sequence

In the case of the ADPT1 activity, 84% of students consider it suitable or highly suitable for
achieving the learning outcomes. In the case of the ADPT2 and ADPT3 activities, the
corresponding results are 76% and 96%, respectively.

Sections B and C of the reflective memo shown in Figure 6 allowed gathering student
comments about the ADPT sequences. Among the positive comments received, we find
comments such as “activity ADPT1 was fun, it made us work as a team, and I could
contribute my ideas for solving the problem”, “for ADPT2, we found out how to use
mathematical functions and how to use external libraries”, “we could associate the vehicle’s
movement to a mathematical function such as sin(x), cos(x), it was great!”, “in ADPT3, we

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

learned how to use the string library on a real text processing problem”. Also, negative
comments such as “programming is hard for me so I needed more time to finish the activity”,
or “I didn’t know all the control structures needed for this activity” give us the chance to detect
problems and study avenues for future activity improvements.

Table 5 shows the evolution of individual grades related to the activities of the three ADPT
didactic sequences (conditional structures, iterative structures and string handling) for the
semesters II-2011, II-2012 and II-2013. In 2011 and 2012, these topics were each evaluated
using a programming test, whereas in 2013 these topics were evaluated using the ADPT
method. Even though student cohorts are generally homogeneous from one year to the next,
the II-2013 semester grades improvement cannot be solely attributed to the ADPT method.
However, high student motivation and positive student comments about the method lead us
to believe that the ADPT method is a positive didactic improvement in teaching programming.

Table 5. Evolution of grades

II- 2011 II-2012 II -2013

 Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 ADPT1 ADPT2 ADPT3

% Passing grades 15% 38% 19% 30% 35% 40% 80% 85% 72%

Average (1 to 7 scale) 2,8 4,2 3 3,5 4,4 4,6 5,9 5,5 5,2

CONCLUSIONS

We have found the ADPT method to be a worthy contribution to CDIO standard 8, as it helps
improve the application of active learning methods in the UCSC School of Engineering, which
is currently at level 3 (Martínez et al., 2013). ADPT also contributes to the CDIO syllabus
goals stated in the course: teamwork, analytical reasoning and problem solving. Our
preliminary results for the ADPT method lead us to believe that it can aid the teaching of
computer programming, as it improves student motivation, it helps generate valuable
interactions within student teams, and also it promotes collaboration with other teams, thus
contributing to CDIO standard 7 and 11 by integrating different assessment methods. The
results were positive both in relation to the assessment of the results obtained by the student
teams as well as students' perception of the ADPT method. Student comments also show
that some students have trouble elucidating unknown concepts by searching for relevant
information, even in the case of well-structured or semi well-structured problems. This
weakness may be addressed the following semester by having the instructor intervene
directly and identify common conceptual weaknesses in each group, and explaining them
either in situ, or in a previous lecture, to improve the students' input behavior. On the other
hand, phrases such as “even though problems were a bit complicated because we didn't
know all the control structures, we shared ideas, discussed them and solved the problem”
show that students recognize the value of teamwork and of learning in a real context. Even
though ADPT is an introductory-level design implementation experience contributing to CDIO
standard 5, it can be exported and adapted to higher-level courses such as Software
Engineering Workshop, which is currently taught using a Project-Based Learning approach.

The School of Engineering at UCSC is working on systematizing the application of student-
centered methodologies. Thus, Faculty are convinced of the importance of developing both
disciplinary knowledge and across-the-curriculum skills such as teamwork, critical thinking,
decision making, etc., in our students, so as to give them an integral professional education.

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,
Barcelona, Spain, June 16-19, 2014.

REFERENCES

Barrows, H. S. & Tamblyn, R. (1980). Problem-Based Learning: An approach to Medical Education.
New York: Springer.

Felder, R. & Brent, R. (1994). Cooperative Learning in Technical Courses: Procedures, Pitfalls, and
Payoffs. Retrieved from http://www.ncsu.edu/felder-public/Papers/Coopreport.html.

Felder, R. & Brent, R. (2007). Cooperative Learning. Chapter 4 of P. A. Mabrouk, (Ed.), Active
Learning: Models from the Analytical Sciences, ACS Symposium Series 970. Washington, DC:
American Chemical Society.

Johnson, D. W., Johnson, R. T. & Smith, K. A. (1998). Active Learning: Cooperation in the College
Classroom, (2nd ed.); Interaction Book: Edina, MN.

Loyer, S., Muñoz, M., Cardenas, C., Martínez, C., Cepeda, M. & Faúndez, V. (2011). A CDIO
Approach to Curriculum Design of five Engineering Programs at UCSC. Proceedings of the 7th
International CDIO Conference, Technical University of Denmark, Copenhagen.

Martínez C., Muñoz M., Cárdenas, C. & Cepeda, M. (2013). Adopción de la Iniciativa CDIO en los
Planes de Estudio de las Carreras de la Facultad de Ingeniería de la UCSC. Proceedings of the 11th
Latin American and Caribbean Conference for Engineering and Technology.

Muñoz M., Martínez, C., Cárdenas, C. & Cepeda, M. (2013). Active learning in first-year engineering
courses at Universidad Católica de la Santísima Concepción. Australasian Journal of Engineering
Education,19(1), 27-38.

Pressman, R. (2009). Software Engineering: A Practitioner's Approach, 7th. Ed. McGraw-Hill, New
York.

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering
Education, 93(3), 223-231.

BIOGRAPHICAL INFORMATION

Claudia Martínez A. is a faculty member in the Computer Science department at UCSC,
where she also serves as department head. Her research and interest areas are related to
information retrieval, semantic web, programming and engineering education.

Marcia Muñoz V. is a faculty member in the Computer Science department UCSC, where
she also serves as undergraduate program director. Her research interests are software
engineering, artificial intelligence, machine learning, and engineering education.

Corresponding author

Mg. Claudia Martínez A.
Computer Science Department
Universidad Católica de la Santísima Concepción
Alonso de Ribera 2850, Casilla 2850
Concepción, Chile 4090541
56-41-234-5332
cmartinez@ucsc.cl

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License

.

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US�

